What is Molybdenum Disulfide?
disulfide Molybdenum is an inorganic compound with the chemical formula MoS2. it is a dark gray or black solid powder with a layered structure in which each layer consists of alternating layers of sulfur and molybdenum atoms. This layered structure allows molybdenum disulfide to exhibit unique physical and chemical properties in certain areas.
Molybdenum disulfide powder is a vital inorganic non-metallic material, which is a solid powder formed by way of a chemical reaction between the elements sulfur and molybdenum, with unique physical and chemical properties, and it is widely used in different fields.
In appearance, molybdenum disulfide powder appears as being a dark gray or black solid powder using a metallic luster. Its particle dimensions are usually from a few nanometers and tens of microns, with higher specific area and good fluidity. The lamellar structure of molybdenum disulfide powder is one of its important features. Each lamella consists of alternating sulfur and molybdenum atoms, which lamellar structure gives molybdenum disulfide powder good lubricating and tribological properties.
With regards to chemical properties, molybdenum disulfide powder has high chemical stability and does not easily interact with acids, alkalis as well as other chemicals. It has good oxidation and corrosion resistance and will remain stable under high temperature, high-pressure and high humidity. Another significant property of molybdenum disulfide powder is its semiconductor property, which can show good electrical conductivity and semiconductor properties under certain conditions, and it is widely used inside the creation of semiconductor devices and optoelectronic materials.
With regards to applications, molybdenum disulfide powder is widely used in the field of lubricants, where it can be used being an additive to lubricants to enhance lubrication performance and reduce friction and wear. It is additionally used in the creation of semiconductor devices, optoelectronic materials, chemical sensors and composite materials. In addition, molybdenum disulfide powder can be used as an additive in high-temperature solid lubricants and solid lubricants, as well as in the creation of special alloys with higher strength, high wear resistance and high corrosion resistance.
Physical Properties of Molybdenum Disulfide:
Molybdenum disulfide includes a metallic luster, nevertheless it has poor electrical conductivity.
Its layered structure gives molybdenum disulfide good gliding properties along the direction from the layers, a property that is certainly widely found in tribology.
Molybdenum disulfide has low conductivity for heat and electricity and it has good insulating properties.
Under a high magnification microscope, molybdenum disulfide may be observed to exhibit a hexagonal crystal structure.
Chemical Properties:
Molybdenum disulfide can interact with oxygen at high temperatures to create MoO3 and SO2.
In a reducing atmosphere, molybdenum disulfide may be reduced to elemental molybdenum and sulfur.
In an oxidizing atmosphere, molybdenum disulfide may be oxidized to molybdenum trioxide.
Methods of preparation of molybdenum disulfide:
Molybdenum disulfide may be prepared in a variety of ways, the most common of which would be to use molybdenum concentrate as the raw material and react it with sulfur vapor at high temperatures to get molybdenum disulfide at the nanoscale. This preparation method usually requires high temperature conditions, but may be produced on a large. Another preparation method is to get molybdenum disulfide by precipitation using copper sulfate and ammonia as raw materials. This process is relatively low-temperature, but larger-sized molybdenum disulfide crystals may be produced.
Superconducting properties of molybdenum disulfide
Molybdenum disulfide may be prepared in a variety of ways, the most common of which would be to use molybdenum concentrate as the raw material and react it with sulfur vapor at high temperatures to get molybdenum disulfide at the nanoscale. This preparation method usually requires high temperature conditions, but may be produced on a large. Another preparation method is to get molybdenum disulfide by precipitation using copper sulfate and ammonia as raw materials. This process is relatively low-temperature, but larger-sized molybdenum disulfide crystals may be produced.
Superconducting properties of molybdenum disulfide
The superconducting transition temperature of any material is a vital parameter in superconductivity research. Molybdenum disulfide exhibits superconducting properties at low temperatures, using a superconducting transition temperature of around 10 Kelvin. However, the superconducting transition temperature of molybdenum disulfide is relatively low compared to conventional superconductors. However, this may not prevent its use within low-temperature superconductivity.
Trying to find MoS2 molybdenum disulfide powder? Contact Now!
Application of molybdenum disulfide in superconducting materials
Preparation of superconducting materials: Using the semiconducting properties of molybdenum disulfide, a whole new kind of superconducting material may be prepared. By doping molybdenum disulfide with certain metal elements, its electronic structure and properties may be changed, thus obtaining a new kind of material with excellent superconducting properties. This material could have potential applications in the field of high-temperature superconductivity.
Superconducting junctions and superconducting circuits: Molybdenum disulfide can be used to prepare superconducting junctions and superconducting circuits. Due to the layered structure, molybdenum disulfide has excellent electrical properties within both monolayer and multilayer structures. By combining molybdenum disulfide with other superconducting materials, superconducting junctions and circuits with higher critical current densities may be fabricated. These structures can be used to make devices like superconducting quantum calculators and superconducting magnets.
Thermoelectric conversion applications: Molybdenum disulfide has good thermoelectric conversion properties. In the area of thermoelectric conversion, molybdenum disulfide can be utilized to convert thermal energy into electrical energy. This conversion is very efficient, environmentally friendly and reversible. Molybdenum disulfide therefore has an array of applications in the field of thermoelectric conversion, for example in extreme environments like space probes and deep-sea equipment.
Electronic device applications: Molybdenum disulfide can be used in electronic devices because of its excellent mechanical strength, light transmission and chemical stability. For instance, molybdenum disulfide can be used inside the creation of field effect transistors (FETs), optoelectronic devices and solar cells. These products have advantages like high-speed and low power consumption, and thus have an array of applications in the field of microelectronics and optoelectronics.
Memory device applications: Molybdenum disulfide can be used in memory devices because of its excellent mechanical properties and chemical stability. For instance, molybdenum disulfide can be used to prepare a memory device with higher density and high speed. Such memory devices can start to play a crucial role in computers, cell phones as well as other digital devices by increasing storage capacity and data transfer speeds.
Energy applications: Molybdenum disulfide even offers potential applications inside the energy sector. For instance, a higher-efficiency battery or supercapacitor may be prepared using molybdenum disulfide. This type of battery or supercapacitor could provide high energy density and long life, and thus be applied in electric vehicles, aerospace and military applications.
Medical applications: Molybdenum disulfide even offers several potential applications inside the medical field. For instance, the superconducting properties of molybdenum disulfide can be utilized to generate magnets for magnetic resonance imaging (MRI). Such magnets have high magnetic field strength and uniformity, which can enhance the accuracy and efficiency of medical diagnostics. In addition, molybdenum disulfide can be used to make medical devices and biosensors, amongst others.
Other application regions of molybdenum disulfide:
Molybdenum disulfide is used as being a lubricant:
Due to the layered structure and gliding properties, molybdenum disulfide powder is widely used being an additive in lubricants. At high temperatures, high pressures or high loads, molybdenum disulfide can form a protective film that reduces frictional wear and improves the operating efficiency and repair life of equipment. For instance, molybdenum disulfide is used as being a lubricant to lessen mechanical wear and save energy in areas like steel, machine building and petrochemicals.
Like most mineral salts, MoS2 includes a high melting point but actually starts to sublimate with a relatively low 450C. This property is useful for purifying compounds. Due to its layered structure, the hexagonal MoS 2 is a wonderful “dry” lubricant, much like graphite. It along with its cousin, tungsten disulfide, can be used as mechanical parts (e.g., inside the aerospace industry), in two-stroke engines (what type used in motorcycles), and as surface coatings in gun barrels (to reduce friction between bullets and ammunition).
Molybdenum disulfide electrocatalyst:
Molybdenum disulfide has good redox properties, which is the reason it is actually used being an electrocatalyst material. In electrochemical reactions, molybdenum disulfide can be used as an intermediate product that efficiently transfers electrons and facilitates the chemical reaction. For instance, in fuel cells, molybdenum disulfide can be used as an electrocatalyst to enhance the vitality conversion efficiency from the battery.
Molybdenum disulfide fabricates semiconductor devices:
Due to the layered structure and semiconducting properties, molybdenum disulfide is used to manufacture semiconductor devices. For instance, Molybdenum disulfide is used inside the creation of field effect transistors (FETs), that are widely used in microelectronics because of the high-speed and low power consumption. In addition, molybdenum disulfide can be used to manufacture solar cells and memory devices, amongst other things.
Molybdenum disulfide photovoltaic materials:
Molybdenum disulfide includes a wide bandgap and high light transmittance, which is the reason it is actually used being an optoelectronic material. For instance, molybdenum disulfide can be used to manufacture transparent conductive films, which have high electrical conductivity and light transmittance and they are widely used in solar cells, touch screens and displays. In addition, molybdenum disulfide can be used to manufacture optoelectronic devices and photoelectric sensors, amongst others.
Molybdenum disulfide chemical sensors:
Due to the layered structure and semiconducting properties, molybdenum disulfide is used as being a chemical sensor material. For instance, molybdenum disulfide can be used to detect harmful substances in gases, like hydrogen sulfide and ammonia. In addition, molybdenum disulfide can be used to detect biomolecules and drugs, amongst others.
Molybdenum disulfide composites:
Molybdenum disulfide may be compounded with other materials to create composites. For instance, compounding molybdenum disulfide with polymers can produce composites with excellent tribological properties and thermal stability. In addition, composites of molybdenum disulfide with metals may be prepared with excellent electrical conductivity and mechanical properties.
High quality Molybdenum disulfide supplier
If you are looking for high-quality Molybdenum disulfide powder or if you want to know more information about MoS2 Molybdenum disulfide powder, please feel free to contact us and send an inquiry. ([email protected])